

 [image: MMDOES logotype]
Welcome to MMODES’s documentation!

MMODES is a package built on top of COBRApy [https://opencobra.github.io/cobrapy/]
and SciPy [https://www.scipy.org/] to allow fast set up of dynamic simulations with GEM models (dFBA),
isolated or in a consortium.

Contents:

	Installing MMODES
	PIP Install

	Build from SOURCE

	DOCKER Install

	Uninstall

	Getting started
	First steps: the Consortium object

	Instantiating the medium

	Run the simulation!

	The Consortium Object
	Most common parameters

	Setting models

	Setting media

	Running the Community simulation

	Adding perturbations

	The dModel Object
	Adding models to the Consortium

	Limiting growth of the model

	Death rate

	The Experiment Object
	Instantiating the Experiment

	Running an Experiment

	Filtering the output

Indices and tables

	Index

	Module Index

	Search Page

Installing MMODES

A Python version >= 3.6 is required in order to install MMODES (install Python 3 [https://www.python.org/downloads/]).
To avoid messing up with versions, working on a virtualenv [https://virtualenv.pypa.io/en/stable/] might be a good idea.

PIP Install

It’s recommended to install MMODES via pip. This way, the latest stable version
of the package is guaranteed. Naturally, in order to install MMODES through pip,
pip tool is required (if it isn’t installed, check the pip’s installation instructions [https://pip.pypa.io/en/stable/installing/]).
Usually, the –user flag is required. On a bash shell:

pip3 install mmodes --user

Build from SOURCE

Otherwise, you can build from the GitHub repository [https://github.com/carrascomj/mmodes]. COBRApy [https://opencobra.github.io/cobrapy/]
version used is 15.2. Scipy [https://www.scipy.org/], numpy [https://www.numpy.org/],
matplotlib [https://matplotlib.org/] and dill [https://pypi.org/project/dill/]
are also required. A cobra version >= 14 should also work, albeit not being guaranteed.

git clone https://github.com/carrascomj/mmodes.git # or ssh
cd path_to_mmodes/mmodes
sudo python3 setup.py install

DOCKER Install

A docker image is currently under development.

Uninstall

Uninstalling can be accomplished via pip:

pip3 uninstall mmodes --user # if user install
sudo pip3 uninstall mmodes # if superuser install (from source)

Getting started

An example script is provided on the GitHub repository [https://github.com/carrascomj/mmodes/blob/master/example.py]
and will be here described here.

First steps: the Consortium object

You need a GEM model to run a consortium dynamic simulation.
BiGG models [http://bigg.ucsd.edu/] is a good place to start.
Conversely, a model example of Bifidobacterium adolescentis of the
AGORA database [https://github.com/VirtualMetabolicHuman/AGORA]
is provided as example on the ModelsInput [https://github.com/carrascomj/mmodes/tree/master/ModelsInput].

First, we instantiate a Consortium object, that will contain all the required parameters for the simulation.

from mmodes import Consortium, dMetabolite
cons = Consortium(mets_to_plot = ["thr_L[e]", "ac[e]"])

mets_to_plot parameter is supplied to later plot these metabolites.
Now, we add the model to the Consortium object.

path_to_model = 'mmodes/ModelsInput/BGN4_eu.xml' # provided example GEM
Additionally, we'll instantiate some metabolite
to assign kinetic parameters
for instance, https://www.ncbi.nlm.nih.gov/pubmed/18791026?dopt=Abstract
glc = dMetabolite(id = "glc_D[e]", Km = 14.8, Vmax = 0.13)
cons.add_model(path_to_model, 0.0003, dMets = {glc.id: glc})

More information of Consortium class can be found on The Consortium Object.

Instantiating the medium

The last step previous to running the simulation is assigning a medium to
the Consortium. In the example [https://github.com/carrascomj/mmodes/blob/master/example.py],
medium is read from a JSON file (which is a dictionary).

Here, we will instantiate a medium using all the extracellular metabolites of the model(s) added in the Consortium.

abs_media = {k: 1000 for k in cons.media}
cons.media = cons.set_media(abs_media)
print(cons)

Make sure that all metabolites in the medium are named the same as in the added GEM models.
MMODES supports working with metabolite identifiers or names, default is id.
If some metabolites are misspelled, they won’t be added.
Conversely, metabolites that are in the extracellular compartment of the GEM members
of the Consortium, that were not added to the medium, will be set to 0.

Run the simulation!

The last step is running the simulation.

cons.run(maxT = 10, outp = "plot_example.png", outf = "tab_example.tsv", verbose=True)
print information pieces on screen
for mod in cons.models:
 print(mod, cons.models[mod].volume.q, sep = " -> ")
print("Glucose", str(cons.media["glc_D[e]"]), sep = " -> ")
print("Acetate", str(cons.media["ac[e]"]), sep = " -> ", end = "\n\n")

As demonstrated, MMODES allows running a dynamic (p)FBA simulation with a few
lines of code. A TSV file and a plot should’ve been generated on the working directory.

[image: MMDOES logotype]

The next steps into MMODES should be taking a glimpse at The Consortium Object.

Also, The Experiment Object demonstrates how the Consortium class can
be extended to ease even more the configuration of microbial community simulations.

The Consortium Object

The Consortium Class is the central axis of the MMODES package.
It carries all the required parameters to run a dynamic simulation of a microbial
community.

Most common parameters

	
class Consortium(max_growth = 10, v = 1, stcut = 1e-8, title = "draft_cons", mets_to_plot = [], work_based_on = "id", manifest = "", comets_output = False)

	
	Parameters

	
	max_growth (if) – is the maximum biomass that a GEM model is allowed to reach (default = 10)

	v (float) – is the volume of the modeled space. Amounts will be transformed to concentrations using this parameters (default = 1). Units are arbitrary, but L are used by convention.

	stcut (float) – is the limit of biomass flux (growth increment) where the simulation is considered to have reached a stable state and stops. Turn to a negative number to keep the simulation running (default = 1e-8).

	title (str) – of the generated plot of the simulation

	mets_to_plot (list) – are the metabolites to be later plotted.

	work_based_on (str) – (=”id” | “name”) is a REALLY important parameter. It indicates whether extracellular metabolite names or ids should be used to communicate models and understand the medium. One should use the attribute (id or name) that is consistent among all the GEM models (just consistency on the extracellular metabolites is required) (default = “id”)

	manifest (str) – if a non-empty string is provided, it will output a fluxes TSV file to this path (default=”“).

	comets_output (bool) – whether output (including fluxes) should be written in COMETS-like format.

COMETS-like output can be used to visualize reaction fluxes in VisAnt [http://visant.bu.edu/].

Setting models

dModel objects are containers of COBRA model objects, with some
features to compute the multi-strain simulation. The method to add a GEM model to
the Consortium is the following:

	
Consortium.add_model(mod_path, volume_0, solver = "glpk", method = "pfba", dMets = {}, limit = False)

	
	Parameters

	
	mod_path (string) – path to the model in SBML, MAT or JSON format.

	volume_0 (float) – initial concentration (usually, g/L) of biomass.

	dMets (dictionary) – of metabolite.id : dMetabolites.

	limit (maximum) – biomass values that is allowed for this particular dModel (default = False, no limitation).

More information about the limit parameter and the dModel in general can be found on The dModel Object.

Setting media

Consortium.media is a simple dictionary of metabolite ids/names : concentrations.
It can be passed as a simple dictionary. Also,
a handy method is provided to read from a JSON file object (with the structure of a dictionary).

	
Consortium.set_media(media, concentration = False)

	Adds media as the Consortium medium object. If concentration is True, values of the dictionary
will be converted to concentrations (using the volume parameter).

	
Consortium.media_from_json(jfile, concentration = False)

	Uploads medium from a jfile path. This path corresponds to a JSON file which contains a dictionary.

Note

Concentration units are arbitrary, although the convention dictates mmol/L for metabolites and g/L for biomass.
Take into account consistency among units when instantiating the medium. Also, time is assumed to be in hours.

Running the Community simulation

	
Consortium.run(maxT=10, integrator='vode', stepChoiceLevel=(0., 0.5, 1000.), verbose = False, outf = "plot.tsv", outp = "plot.png", plot = True, actualize_every = float('-inf'))

	Starts the community simulation, solving the system of ODE’s.

	Parameters

	
	maxT (float) – in time simulation units (hours), simulation will stop when it reaches this parameter (default = ‘10’).

	integrator (str) – (‘vode’ ‘dopri5’ ‘fea’ ‘rk4’) type of ODE integrator (default = ‘vode’).

	stepChoiceLevel (str) – (0, max time step, max number of time-steps) for vode and (time-step, 0, max number of time-steps) for the rest of integrators (default = 0., 0.5, 100).

	verbose (bool) – a verbose simulation will show a progress bar and the reason of exiting the simulation (default = False).

	outf (str) – path where the output will be generated (default= plot.tsv).

	outp (str) – path where the plot will be generated (default= “plot.png”).

	plot (bool) – whether to generate the plot (default= True).

Assigning a maxT parameter doesn’t guarantee to reach that time, since simulation
could be terminated when it reaches the maximum number of steps (in stepChoiceLevel),
when it’s stabilized (stcut in the Consortium) or when some simulation
exceeds that maximum growth (max_growth in the Consortium, different
from limit in The dModel Object).

Once the simulation is finished, the output could be later generated:

from mmodes.vis import plot_comm
plot_comm(cons) # cons is a Consortium object which has already run

On this point, other metabolites could’ve been plotted changing mets_to_plot
attribute of Consortium.

Warning

Please, take into account that the results will be appended to outf and
the plot will be generated from this path. Thus, make sure a file with this
name doesn’t exist before a simulation is started.

Adding perturbations

Metabolites and perturbations are added with the following method:

	
Consortium.add_mets(pert, concentration = False)

	
	Parameters

	
	pert (dict) – same format as media. Additionally, keys corresponding to model ID’s can be used to add biomass to a model.

	concentration (bool) – whether amounts in pert should be transformed to concentration units.

Once the method has been called, the same Consortium can run again, simulating a perturbation.

Putting it all together:

from mmodes import Consortium
from mmodes.vis import plot_comm

cons = Consortium()
cons.add_models(mod_path = "path_to_some_model_file.mat", volume_0 = 0.001)
cons.add_models(mod_path = "path_to_some_other_model_file.xml", volume_0 = 0.0012)
cons.media = cons.media_from_json(jfile = 'some_dict_file.json')
cons.run(plot = False)
cons.add_mets({'glc[e] : 0.02'})
cons.run(plot = False)
plot_comm(cons)

The dModel Object

The dModel object expands the COBRApy Model object with some features. It acts as
a container, not as a subclass of it.

Adding models to the Consortium

Usually, models are added with Consortium methods. Please refer to The Consortium Object to see how.
It’s important to note that when a dModel is added, it will be optimized to check if
it’s operative. The model.id cobra attribute will be used as dModel.id.

Furthermore, the growth increment of the dModel will be taken from de biomass function. It doesn’t
need to be the objective funtion that will be optimized during the simulation, MMODES
will take the first reaction that starts with “biomass”. This allows some functionalities
but can be troublesome when more than one biomass reaction is present in the model.

Once added to the Consortium, dModels are accesible from the attribute models.
This attribute is a dictionary of dModel.id : dModel object.

Limiting growth of the model

At the moment of adding the model, limit is a parameter that can be tuned:

	if False (default), no limitations will be applied;

	if True, model won’t grow, but the solution of fluxes will be used to update the medium and added to the output files;

	if a numeric value is passed, the model will be allowed to grow until this amount is reached, then it will behave as if limit = True.

Death rate

death_rate is an attribute that can be added once the dModel is instantiated
(or added to the Consortium). This parameter is incompatible with limit.

The Experiment Object

The Experiment class provides a handy wrapper around the Consortium object with two key objectives:

	Store the state and perturbations occurred in a Consortium.

	Run sequences of dFBA + perturbations directly from configuration files.

	Automatic filtering of output files.

Using the package, we realized that a common operation was to initialize models
from a directory with random initial biomasses, instantiate medium and run a loop
that adds a perturbation and runs the simulation. That’s exactly the objective
of this class.

Instantiating the Experiment

Experiment is a subclass of Consortium and follows a similar initialization, adjusted
to read directly from files at the time of instantiating:

	
class Experiment(medium_path = "", models_dir = "", rand_biomasses = [0.0001,0.0005], perturbations = [], ..., lp = "fba", solver = "glpk")

	
	Parameters

	
	medium_path (string) – path to a JSON file containing medium and perturbations

	models_dir (string) – path to the directory where the models are read from

	rand_biomasses (list) – of two floats, upper and lower constraints to randomized initial biomasses (default = [0.0001,0.0005])

	perturbations (list) – of names of the perturbations (default = list of generic names)

	lp (string) – establishing the type of LP problem (default = “fba”) to solve by the solver (default = “glpk”)

	.. – Rest of parameters of a Consortium.

The JSON file where medium_path points must have the structure of a list of dictionaries.

[
 {
 Metabolite_of_media1 : amount,
 Metabolite_of_media2 : amount
 ...
 },
 {
 Metabolite_of_pertubation1 : amount,
 Metabolite_of_pertubation2 : amount
 ...
 },
 {
 Metabolite_another_pertubation1 : amount,
 Metabolite_another_pertubation2 : amount
 },
 ...
]

The perturbations parameters must have the same length of this JSON list. Either way,
a warning will be printed and, if needed, it will be filled with generic names.
On the other hand, the models on models_dir directory should have an xml,
mat or json extension. If a file in this directory isn’t a model, a warning will be printed.

An example can be performed from the MMODES root directory in the GitHub repository [https://github.com/carrascomj/mmodes].

from mmodes import Experiment

exp = Experiment(medium_path = "ModelsInput/media.json", models_dir = "ModelsInput",
 perturbations = ['START', 'THR+TYR'], mets_to_plot = ["ac[e]", "thr_L[e]"],
 title = "B. adolescentis with 1 perturbation")

Note

Don’t get frightened by the walls of text in the screen. Each file is tried to be
read by COBRAPy with different parsers and libSBML is really verbose right now.
Sadly, it can’t be filtered by now.

Running an Experiment

	
Experiment.run_experiment(intervl = 10, integrator = 'vode', stepChoiceLevel = (), verbose = False, outp = "models_dir.png", filter = False, equif = True, inplace_filter = False, plot = True, actualize_every = float(-inf))

	Starts a loop of community simulations + perturbations

	Parameters

	
	intervl (float) – time in simulation units (hours) between perturbations (default = ‘10’).

	integrator (str) – (‘vode’ ‘dopri5’ ‘fea’ ‘rk4’) type of ODE integrator (default = ‘vode’).

	stepChoiceLevel (str) – (0, max time step, max number of time-steps) for vode and (time-step, 0, max number of time-steps) for the rest of integrators (default = 0., 0.5, 100).

	verbose (bool) – a verbose simulation will show a progress bar, the reason of exiting the simulation and some messages of perturbations (default = False).

	out (string) – path where the output will be generated (default= plot.tsv).

	outp (string) – path where the plot will be generated (default= “Some_Experiment.png”).

	plot (bool) – whether to generate the plot (default= True).

	actualize_every (float) – time interval of writing to output files (default = -inf, write always)

The rest of parameters are discussed in the next section.

Following the above example:

#16 h of simulation
exp.run_experiment(intervl = 8, integrator = 'fea', stepChoiceLevel = (0.005,0.5,10000))

It should have generated a tsv called plot.tsv and an image called Some_Experiment.png
like the one presented:

[image: MMDOES logotype]

Filtering the output

The 3rd objective of this class was to filter the output. But how exactly is filetered?
Briefly, the points right before each Perturbation in Medium output and fluxes are kept.
In addition, the fluxes can be filtered by keeping 100 equidistant points, generating
other file. We found that those kind of files were really useful for some applications.

The parameters that control the filtering are in the run_experiment().

	param bool filter

	whether output should be filtered (default = False)

	param bool equif

	whether the equidistant flux output should be generated. It only works when filter is True (default = True).

	param bool inplace_filter

	whether the original output should be overwritten by the filtered one (default = False)

Note

The filtering functions currently support datatable [https://github.com/h2oai/datatable]. If datatable, which is not
a requiring for installing MMODES, isn’t available, pandas [http://pandas.pydata.org/] will be used. With
large outputs, using pandas might be quite slow.

Index

 A
 | C
 | E
 | M
 | R
 | S

A

 	
 	add_mets() (Consortium method)

 	
 	add_model() (Consortium method)

C

 	
 	Consortium (built-in class)

E

 	
 	Experiment (built-in class)

M

 	
 	media_from_json() (Consortium method)

R

 	
 	run() (Consortium method)

 	
 	run_experiment() (Experiment method)

S

 	
 	set_media() (Consortium method)

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to MMODES’s documentation!

 		
 Installing MMODES

 		
 PIP Install

 		
 Build from SOURCE

 		
 DOCKER Install

 		
 Uninstall

 		
 Getting started

 		
 First steps: the Consortium object

 		
 Instantiating the medium

 		
 Run the simulation!

 		
 The Consortium Object

 		
 Most common parameters

 		
 Setting models

 		
 Setting media

 		
 Running the Community simulation

 		
 Adding perturbations

 		
 The dModel Object

 		
 Adding models to the Consortium

 		
 Limiting growth of the model

 		
 Death rate

 		
 The Experiment Object

 		
 Instantiating the Experiment

 		
 Running an Experiment

 		
 Filtering the output

_images/plot_example.png
organisms (g/L)

0.00083

draft_cons

0.00066 A

0.00050 A

0.00033 A

0.00017 A

0.00000

=== aclel]
=== thr_L[e]

——— bifidobacterium

=
e —

0.2515

- 0.2012

- 0.1509

- 0.1006

- 0.0503

- 0.0000

time(h)

metabolites (mmol/L)

_images/Some_Experiment.png
B. adolescentis with 1 perturbation

0.00221 0.3673
=== acle] emmm===
——- thr_Lle] g
0.00177 [0.2938
S 0.00133 1 02204
"
£
@
5 0.1469
 0.00088 |
o
L 0.0735
0.00044
[0.0000
0-00000 T T T T T T T T T

time(h)

metabolites (mmol/L)

